Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations

This paper studies the so-called bi-quadratic optimization over unit spheres min x∈Rn,y∈Rm ∑ 1≤i,k≤n, 1≤j,l≤m bijklxiyjxkyl subject to ‖x‖ = 1, ‖y‖ = 1. We show that this problem is NP-hard and there is no polynomial time algorithm returning a positive relative approximation bound. After that, we present various approximation methods based on semidefinite programming (SDP) relaxations. Our theo...

متن کامل

Semidefinite Programming Relaxations and Algebraic Optimization in Control

We present an overview of the essential elements of semidefinite programming as a computational tool for the analysis of systems and control problems. We make particular emphasis on general duality properties as providing suboptimality or infeasibility certificates. Our focus is on the exciting developments occurred in the last few years, including robust optimization, combinatorial optimizatio...

متن کامل

Equality Based Contraction of Semidefinite Programming Relaxations in Polynomial Optimization

The SDP (semidefinite programming) relaxation for general POPs (polynomial optimization problems), which was proposed as a method for computing global optimal solutions of POPs by Lasserre, has become an active research subject recently. We propose a new heuristic method exploiting the equality constraints in a given POP, and strengthen the SDP relaxation so as to achieve faster convergence to ...

متن کامل

On Approximating Complex Quadratic Optimization Problems via Semidefinite Programming Relaxations

In this paperwe study semidefinite programming (SDP)models for a class of discrete and continuous quadratic optimization problems in the complex Hermitian form. These problems capture a class of well-known combinatorial optimization problems, as well as problems in control theory. For instance, they include theMAX-3-CUT problem where the Laplacian matrix is positive semidefinite (in particular,...

متن کامل

Semidefinite Relaxations for Integer Programming

We survey some recent developments in the area of semidefinite optimization applied to integer programming. After recalling some generic modeling techniques to obtain semidefinite relaxations for NP-hard problems, we look at the theoretical power of semidefinite optimization in the context of the Max-Cut and the Coloring Problem. In the second part, we consider algorithmic questions related to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2010

ISSN: 1052-6234,1095-7189

DOI: 10.1137/080729104